P

—
-

—

i

attems

Refactoring Software, Archltectures
and Projects in Cr|3|s L

<~
L e

William J. Brown Raphael C. Malveau
Hays W.“Skip” McCormicklll Thomas J. Mowbray

Software Development AntiPatterns w 73

AntiPattern

THE BLOB

AntiPattern Name: The Blob
Also Known As: Winnebago [Akroyd 96) and The God Class [Riel 06]
Most Frequent Scale: Application

Refactored Solution Name: Refactoring of Responsibilities
Refactored Solution Type: Software

Root Causes: Sloth, Haste

Unbalanced Forces: Management of Functionality, Performance,
Complexity

Anecdotal Evidence: “This is the class that is really the heart of our
architecture.”

& BackcrouND

Do you remember the original black-and-white movie The Blob? Perhaps
vou saw only the recent remake. In either case, the story line was almost
the same: A drip-sized, jellylike alien life form from outer space somchow
makes it to Earth. Whenever the jelly thing cats (usually unsuspecting
carthlings), it grows. Meanwhile, incredulous earthlings panic and ignore
the one crazy scientist who knows what's happening. Many more people
are caten before they come to their senses. Eventually, the Blob ETOWS SO
large that it threatens to wipe out the entire planet. The mavie is a good
analogy for the Blob AntiPattern, which has been known to consume
entire object-oriented architectures (see Figure 5.1)

@ GENERAL FORM

The Blob is found in designs where one class monopolizes the processing,
and other classes primarily encapsulate data. This AntiPattemn is character-

74 m CHaPTER Five

.

FIGURE 5.1 The Blah,

ized by a class diagram composed of a single complex controller class sur-
reunded by simple data classes, as shown in Figure 5.2. The key praoblem
here is that the majority of the responsibilities are allocated to a single class,

In general, the Blob is a procedural design even though it may be rep-
resented using object notations and implemented in object-oriented lan-
guages. A procedural design separates process from data, whereas an
object-oriented design merges process and data models, along with parti-
tions. The Blob contains the majority of the pracess, and the other objects
contain the data. Architectures with the Blob have separated pracess from
data; in other words, they are procedural-style rather than object-oriented
architectures.

The Blob can be the result of inappropriate requirements allocation.
For example, the Blob may be a sofiware module that is given responsi-
bilities that overlap most other parts of the system for system conirol or
svstem management, The Blob is also frequently a result of iterative devel-
opment where prool-of-concept code evolves over time into a prototype,
and eventually, a production system, This is often exacerbated by the use of
primarily GUl-centric programming languages, such as Visual Basic, that
allow a simple form 1o evolve its functionality, and therefore purpose, dur-

Software Development AntiPatierns m 15

AL A L y
~ Modue_Buton_1
Modude Buton_2
Module Button_3
Itaratar_
lterator_ 2
Conzole
Etc

FICURE 52 Controller Class.

ing incremental development or prototyping. The allocation of responsibili-
ties is not repartitioned during svstem evolution, so that one madule
bacomes predominant. The Blob is often sccompanied by unnecessary
code, making it hard to differentiate between the useful functionality of the
Blob Class and no-longer-used code (see the Lava Flow AntiPattern),

’ SYMPTOMS AND CONSEQUENCES

= Single class with & large number of attributes, operations, or both. A
class with 60 or more attributes and operations usually indicates the
presence of the Blob [Akrovd 96].

= Adisparate collection of unrelated attributes and operations encapsu-
lated in a single class. An overall lack of cohesiveness of the attributes
and operations is tvpical of the Bloh.

76 w CrapTER Five

® A single controller class with associated simple, data-object classcs,

® An absence of object-oriented design. A program main loop inside the
Blob class associated with relatively passive data objects, The single
controller class often nearly encapsulates the applications entire
functionality, much like a procedural main program.

= A migrated legucy design that has not been properdy refactored into
an object-oriented architecture,

= The Blob compromises the inherent advantages of an object-oriented
design. For example, The Blob limits the ability to modify the system
without affecting the functionality of other encapsulated objects,
Madifications to the Blob affect the extensive software within the
Blob’s encapsulation. Modifications to other objects in the system are
also likely to have impact on the Bloh's software.

® The Blob Class is typically tao complex for reuse and testing. It may
be inefficient, or intraduce excessive complexity to reuse the Blob for
subsets of its functionality,

® The Blob Class may be expensive to load into MEmory, using exces-
sive resources, even for simple operalions.

B TYPICAL CAUSES

® Lack of an object-oriented architecture. The designers may not have an
adequate understanding ol ohject-oriented principles. Alternatively,
the team may lack apprapriate abstraction skills.

® Lack of (any) architecture. The absence ol definition of the system
components, their interactions, and the specilic use of the selected
programming languages. This allows programs to evolve in an ad hoz
fashion because the programming Janguages are used for other than
their intended purposes.

® Lack of architecture enforcement. Sometimes this AntiPattern grows
accidentally, even after a reasonable architecture was planned. This
may be the result of inadequate architectural review as development
takes place. This is especially prevalent with development teams new
to object orientation,

® Too limited intervention. In iterative projects, developers tend to add
little pieces of functionality to existing working classes, rather than
add new classes, or revise the class hierarchy for more effective allo-
cation of responsibilities.

8 Specified disaster. Sometimes the Blob results from the way reguire-
ments are specified, If the requirements dictate a procedural solution,

Software Developriens AntiPatterns w 77

then architectural commitments may be made during requirements
analysis that are difficult to change. Defining svstem architecture as
part of requirements analysis is usually inappropriate, and olten
leads 1o the Blob AntiPattern, or worse.

KNOWN EXCEPTIONS

The Blob AntiPattern is acceptable when wrapping legacy systems, There
is no software partitioning required, just a final layer of code to make the
legacy svstem more accessible,

"
@ %° REFACTORED SOLUTION

As with most of the AntiPatierns in this section, the solution involves a form
of refactoring. The key is to move behaviar away from the Blob, It may be
appropriate to reallocate behavior to some of the encapsulated data objects
in a way that makes these ohjects more capable and the Blob less complex.
The method for refactoring responsibilities is described as follows:

1. Tdentify or categorize related attributes and operations according
to contracts. These contracts should be cohesive in that they all
directly relate to a common focus, behavior, or function within the
overall system. For example, a library system architecture diagram
is represented with a potential Blob class called LIBRARY. In the
example shown in Figure 5.3, the LIBRARY class encapsulates the
sum total of all the system’s functionality. Therefare, the first step
IS Lo identify cohesive sets of operations and attributes that repre-
sentcontracts, In this case, we could zather operations related to
catalog management, like Sort_Catalog and Search_Catalog, as
shown in Figure 5.4. We could also identify all operations and
attributes related (o individual items, such as Print_Ttem,
Delete_Item, and so on.

2. The second step is to look for “natural homes" for these contract-
based collections of functionality and then migrate them there. In
this example, we gather operations related to catalogs and migrate
them from the LIBRARY class and move them 1o the CATALOG
class, as shown in Figure 5.5. We do the same with aperations and
attributes related 1o items, moving them to the ITEM class. This
both simplifies the LIBRARY class and makes the ITEM and CAT-
ALOG classes more than simple encapsulated data tables. The
result is a better object-oriented design.

78 m CuHarrer Five

FAGURE 5.3 The Library Blob,

3. The third step is to remove all “far-coupled,” or redundant, indi-
rect asseciations, In the example, the ITEM class is initially far-
coupled to the LIBRARY class in that each item really belongs toa
CATALOG, which in i belongs to a LIBRARY,

4. Next, where appropriate, we migrate associates to dervived classes
to u common base class. In the example, once the farcoupling has
been removed between the LIBRARY and ITEM classes, we need
to migrate ITEMs 1w CATALOGs, as shown in Figure 5.6.

5. Finally, we remave all transient associations, replacing them as
appropriate with type specifiers to attributes and operations argu-
ments. In our example, a Check_Out_ltem or a Search_For_[tem
would be a transient process, and could be moved into a separate
transient class with local attributes that establish the specific loca-
tion or search criteria for a specific instance of a check-out or
search. This process is shown in Figure 5.7,

Software Development AntiPatterns m 19

relatad
meathods

relatad

FAGURES54 Regrouping the Blob by contracts.

=15 variations

Somelimes, with a system composed of the Blob class and its supporting
data objects, too much work has been invested to enable a reluctoring of
the class architecture. An alternative approach may be available that pro-
vides an “80%" solution. Instead of a bottom-up refactoring of the entire
class hierarchy, it may be possible to reduce the Blob class from a con-
troller to a coordinator class, The original Blob class manages the system’s
[unctionality; the data classes are extended with some ol their own pro-
cessing, The data classes operate at the direction of the madified coordina-
tor class. This process may allow the retention of the original class
hierarchy, except for the migrations of processing functionality from the
Rlob class to some of the encapsulated data classes.

30 m CHAPTER FIVE

FIGURES.5 Migrating the contracted collections.

Ricl identifics two major forms of the Blob AntiPattern, He calls
these two forms God Classes: Behavioral Form and Data Form [Riel 96].
The Behavioral Form is an object that contains a centralized process that
interacts with most other parts of the system. The Data Form is an object
that contains shared data used by most other objects in the system. Riel
introduces a number of object-oriented heuristics for detecting and refac-
toring God Class designs,

‘ APPLICABILITY TO OTHER VIEWPOINTS
AND SCALES

Both architectural and managerial viewpoints play key roles in the initial
prevention of the Blob AntiPattern. Avoidance of the Blob may require

Software Development AntiPatterns ™ 81

revnove
far poupiing

L

FIGURE 5.6 Removing the far couplings.

ongoing policing of the architecture to assure adequate distribution of
responsibilities. It is through an architectural viewpoint that an emerging
Blob is recognized. With a mature object-oriented analysis and design pro-
cess, and an alert manager who understands the design, developers can
prevent the cultivation of a Blob.

The most important factor is that, in most cases, it's much less expen-
sive lo create appropriste design than to rework design after implementa-
tion, Up-front investment in good architecture and team education can
ensure a project against the Blob and mest other AntiPatterns, Ask any
insurance salespersen, and he or she may tell you that most insurance is
purchased after it was needed by people who are poorer but wiser,

82 m CuaPTER FIVE

FIGURE 5.7 Removing transient associations,

Software Development AniiPatterns ™ 83

EXAMPLE

A GUI module that is intended to interface to a processing module gradu-
ally takes on the processing functionality of background-processing mod-
ules. Au example of this is a PowerBuilder screen for customer data
entryiretrieval. The screen can:

1. Display data,

2. Edit data.

3. Perform simple type validation. The developer then adds function-
ality to what was intended 1o be the decision engine;

= Complex validation.
= Algorithms that use the validated data 1o assess nexl actions.

4. The developer then gets new requirements to:

= Extend the GUI to three forms.

= Mazke it script-driven (including the development of a script
engine).

» Add new algorithms to the decision engine.

The developer extends the current module to incorporate all of this func-
tionality, So instead of developing several modules, a single module is
developed, as shown in Figure 5.8, If the intended application is archi-
tected and designed, it is easier to maintain and extend. This would look
like Figure 5.9.

84 m Cuarrer Five

Data -
Entry Decision

Form Engine

' Data
‘ Entry Decision

Form Engine

—_— ———g
~-

- Scripting
> Engine
-

FIGURE 5.8 Life of a protoype GUL

Decision

Data Engine

Entry s

Farm S
Serpting
Engine |

FIGURE 59 Life of a protoype application.

Sofrware Development AniiPatierns ® 85

Mini-AntiPattern: Continuous Obsolescence

AntiPattern Problem

Technology is changing so rapidly that developers have trouble keeping
up with the current versions of software and finding combinations of
product releases that work together. Given that every commercial prod-
uct line evolves through new product releases, the situation has become
increasingly difficult for developers to cope with, Finding compatible
releases of products that successtully interoperate is even hardern

Java is a well-known example of this phenemenom, with new ver-
sions coming out every few months. For example, by the lime a book on
Java 1.X gaes to press, a new Java Development Kit obsoletes the infor-
mation. Java is not alone; many other technologies also participate in
Continuous Obsolescence, The most Hagrant examples are products
that embed the vear in their brand names, such as Product98. In this
way, these products flaunt the progression of their absolescence,
Another example is the progression of Microsoft dynamic technologies:

DDE
OLE 1.0
OLE 2.0
COM
ActiveX
DCOM
COM+

From the technology marketers' perspective, there are two key fac-
tors: mindshare amd mrkershare. Rapid innovation requires the dedi-
cated attention of consumers to stay current with the latest product
features, announcements, and terminology. For those following the tech-
nology, rapid innovation contributes 1o mindshare; in other words, there
| is always new news about technology X, Once a dominant marketshare
is obtained, the suppliers' primary income is through obsolescence and
replacement of earlier product releases. The more quickly technologies
ohsolesce {or are perceived as absolete), the higher the income,

86 m Cuarrer FIVE

Refactored Solution

An important stabilizing factor in the technology market is operi sysiems’
standards. A consortium standard is the product of an industry concensts |
that requires time and investment. Joint marketing initiatives build u:
awareness and acceptance as the technologies move into the mainst
There is an inherent inertia in this process that benefits consumers, for
onge a vendor product is conformant to a standard, the manufacnu'cris
unlikely to change the conformant features of the product. !
The advantages of a rapidly obsolescing technology are transitive,
Architects and developers should depend upon interfaces that are stable
or that they control. Open systems standards give a measure of slablllt)‘
to an otherwise chaotic technology markel. ’

\‘ariations_

The Wolf Ticket Mini-AntiPattern (Chapter 6) describes various
approaches that consumers can use to influence product direction
toward improved product quality.

